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ABSTRACT

A predator-prey system is modelled by a pair of ordinary differential
equations, and the qualitative effects of prey nutrient enrichment and
predator harvesting at a rate proportional to the predator population size
are studied. Some theoretical analysis concerning the stability of equilibrium
points and the existence of stable limit cycles is included. Three models
are examined as examples, and for two of them computer simulations are
included to illustrate the changes in qualitative behaviour under nutrient
enrichment and increase of harvesting effort. The essential difference
between this study and our previous work on constazt rate harvesting (Brauer,
Soudack, and Jarosch, 1976) is that here, extinction of predators in finite
time is impossible although the predator population may tend to zero as
t - . Also extinction of predators is much less sensitive to changes of

harvesting effort than for constant rate harvesting.
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RESPONSE OF PREDATOR~PREY SYSTEMS TO NUTRIENT
ENRICHMENT AND PROPORTIONAL HARVESTING

F. Brauer* and A. C. Soudack:t

1. INTRODUCTION

In a previous study (Brauer, Soudack, Jarosch, 1976) we considered
the effect of harvesting predators at a constant rate from a predator-prey
system modelled by a pair of nonlinear ordinary differential equations.
With the aid of a general analysis applied to specific examples and of
computer simulations we demonstrated the possibilities of discontinuities
in limiting behaviour of solutions under nutrient enrichment and increases
in harvesting rate and of both stabilization and destabilization of systems.
These possibilities include extinction of the predator species in finite time.

In many ecological systems it is more natural to study the effect of
harvesting at a rate proportional to the size of the predator population.
This is the case, for example, when the harvest is proportional to the
effort expended, a situation often assumed in models for fisheries manage-
ment, see, for example, Clark (1974).

In this paper, we parallel our previous work by studying the effect

of harvesting at a rate proportional to the size of the predator population

TDe;:oartment nf Mathematics, University of Wisconsin, Madison, U.S.A.

tDep«artment of Electrical Engineering, University of British Columbia,
Vancouver, Canada. Research sponsored in part by the United States Army
under Contract No. DAAG29-75-C-0024 and in part by the National Research
Council of Canada grant # 67-3138.




with a theoretical analysis followed by analysis of some specific
examples and computer simulations of two of these examples. It turns
out that there are significant differences between the dynamics of propor-
tional harvesting and of constant rate harvesting. We shall draw some
specific conclusions, but in general the situation is that response to
proportional harvesting is more predictable and much less sensitive to
changes in initial conditions. The possibility of extinction of the
predators in finite time does not arise in this case, unlike the case of

constant rate harvesting.




2. THEORETICAL BACKGROUND

We consider the system of ordinary differential equations

(1) x!

xf(x, y)

Y' yg(x, Y) - EY, x! = Q y' & QX

as a model for the sizes x(t) of a prey population and y(t) of a
predator population at time t. Here, f(x,y) and g(x,y) are the
respective per capita growth rates of the two population sizes. Predators
are harvested at a time rate proportional to the size of the predator
population, with constant of proportionality E. This parameter E may
be regarded as a measure of the harvesting effort, and it is assumed
that the harvesting rate is proportional to this effort. As in our previous
work (Brauer 1976, Brauer, Soudack, Jarosch 1976) we assume that the
growth rates of the population sizes at time t depend only on the
population sizes at time t, even though this neglects many factors which
could be important for real predator-prey systems. Some of these factors
were suggested in (Brauer, Soudack, Jarosch 1976).

The predator-prey nature of the model is expressed by the assumptions
(2) fy(x, y) <0, g (x,¥) >0, gy(x, y) <0, [x>0,y>0]
where the subscripts indicate partial derivatives. We assume further that
(3) £ (%, Y)QY(X, y) - fy(X, v)g (x,y) >0, [x >0,y >0]

which is satisfied by all the standard models of the form (1) for predator-prey

systems, cf. (Brauer, 1976). In the examples which we shall consider,
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g(x,y) is independent of y, which means that the predators do not
interfere with one another in obtaining food. In this case, (3) is a
consequence of (2).

We shall denote by [x(t,E),y(t,E)] any solution of (1), to indicate
explicitly the dependence on the parameter E. We are interested in the
limiting behaviour as t - ® of bounded solutions of (1). According to
the Poincare-Bendixson theory of two-dimensional autonomous systems
of differential equations (Coddington, Levinson, 1955, Chapter 16), a
bounded solution either tends to a limit, which we denote by
[xw(E), yw(E) ], ortends to a periodic orbit (limit cycle). Since the
only possible limits of solutions of (1) are asymptotically stable
equilibrium points, we study the behaviour of solutions of (1) by examining
the equilibrium points.

An equilibrium point of the system (1) is an intersection
[xw(E), yw(E)] of the prey isocline

f(x,y) = 0
and the predator isocline
g(x,y) = E,

that is, a solution of the pair of equations

il
o

(4) £{x (E), y(E))

]
m

g{x(E), v (E)}

We assume that there is a unique equilibrium point [x w(O),ym(o)] for
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E =0 with xw(O) >0, yw(o) > 0. In view of (2), an increase in E

moves the predator isocline (which is a vertical line if g(x,y) is

independent of y) to the right. Thus the effect of an increase in E

is to move the equilibrium to the right along the prey isocline f(x,y) = 0.
In the examples we shall study, the prey isocline f(x,y) = 0 has

a unique maximum, with fx(x, y) >0 for small x and fx(x, y) <0

for large x. It is known (Brauer, 1976) that if gy(x, y) =0, an

equilibrium [xw(E),yw(E)] is asymptotically stable if and only if

fx{xw(E),Yw(E)} <0.

Since the effect of increasing E is to move the equilibrium to the right,

increasing E may change an unstable equilibrium to a stable equilibrium,

but it can not change a stable equilibrium to an unstable one. If

gy(x, y) # 0, then it is known (Brauer, 1976) that an equilibrium

[xw (E), yw(E)] is asymptotically stable if and only if

Xy (EM, (% (E), v (E)} + vw(E)gy{xw(E),yw(E)} <0.
Under the additional hypotheses
Iyyl*r¥) £0, £ (% ¥) <0,
it is easy to show that

j‘% [xfx(x, y) + vgy(x, y)l <o,

where x and y are related by f(x,y) = 0, and from this it follows

that in the case qy(x, y) #0 increasing E can stabilize an unstable

equilibrium but can not destabilize a stable equilibrium.




We define the number K by f£(K,0) =0, or K=o if f(x,0)>0
for all x> 0. Thus K is the carrying capacity of the prey species -
the equilibrium population the prey would obtain in the absence of
predators. It is clear from the geometry of the isoclines that
[x00 (E),yw(E)] depends continuously on E, unlike the situation in the
case of constant rate harvesting (Brauer, Soudack, Jarosch, 1976), where
the equilibrium point can disappear with a consequent extinction of the
predators in finite time. However, it is possible to produce a biological
catastrophe by harvesting the predators to extinction. If we define

(5) EC = g(Ks 0) ,

then the equilibrium for E > Ec is at (K,0), so that yw(EC) = 0.
Thus EC may be called the critical harvesting effort. Observe that for
E> EC the predator population tends to zero as t - © but does not
reach zero in finite time. Enrichment of the prey environment, as described
by an increase in the carrying capacity (Brauer, 1976; Brauer, Soudack,
Jarosch, 1976) will produce an increase in the critical harvesting effort
because g(K,0) is an increasing function of K, in view of (2).

In studying real populations, we are interested only in the solutions
of (1) which remain in the first quadrant of the x - y plane. If either

population ever becomes zero, the predator-prey system will collapse.

RS R of

For this reason, the equilibrium points of the system (1) at (0,0) and

at (K,0) are of no practical interest. In fact, because of the possibility
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of small perturbations and errors in the system (1), we should require
that solutions do not come too close to either axis. It was for this
reason that we introduced the concept of practical stability in (Brauer,

Soudack, Jarosch, 1976). A system is said to be practically stable if

its solution orbit never comes closer than some preassigned distance to
either axis. In the same spirit, we should define the practical critical
harvesting effort as the harvesting effort which moves the equilibrium
along the prey isocline not to (K, 0) but rather to (xe ,€), where € is
a preassigned safety margin and f(xe, €) = 0. Thus we might define

Epc = g(xt,e) :

It is well-known (Coddington and Levinson, 1955, Chapter 15) that
the qualitative nature of an equilibrium point [xoo (E), Yoo (E)] of the
system (1) is determined by the eigenvalues of the matrix obtained by
linearizing the system (1) about this point. A straightforward calculation,
using Taylor's theorem and (4), shows that this matrix is

xw(E)ix{xw(E),yw(E)} xw(E)fy{xw(E), Y, (E)}

AE) = |y (B9, (B, v (B) v, (B (E), ¥,q (E))

If we define

A(E) = tr A(E) = xf, +yg,

"

A,(E) = det A(E) = xy(fxqy - fycx) >0,

with all functions evaluated at [xw(E), yw(E)], then the eigenvalues

of A(E) are




L ® s {a®) - aa,m)]%) .

1
We have four possibilities, just as in the case of constant rate harvest-
ing examined in (Brauer, Soudack, Jarosch, 1976).
| B | AI(E) <0, {AI(E)}Z -4 AZ(E) > 0, the equilibrium is an
asymptotically stable node.
b, e AI(E) <0, {AI(E)}Z - 4A2(E) < 0, the equilibrium is an
asymptotically stable spiral point.
3. - H AI(E) >0, {AI(E)}Z - 4A2(E) < 0, the equilibrium is an
unstable spiral point.
4. K AI(E) >0, {AI(E)}Z -4 Az(E) > 0, the equilibrium is an
unstable node.
Also, as in the cas e of constant rate harvesting, a theorem of Kalmogorov
(1936) assures the existence of an asymptotically stable limit cycle in
the first quadrant of the x - y nlane in the latter two cases.
For the critical harvesting effort Ec, since yw(Ec) =0, itis

)1 ¥, (E)) = KE (K, 0) <0

easy to see that AI(EC) B xw(Ec)fx{xoo(Ec

and AZ(EC) = 0, which implies that the equilibrium is an asymptotically
stable node. In addition to the critical harvesting effort Ec for which
the system collapses, we define the harvesting effort Es which
stabilizes the system in the sense that the stable limit cycle collapses
to a stable spiral point, characterized by Al(Es) = 0. Since

{Al(}tﬁ)}2 - 4AZ(ES) = -4 AZ(ES) < 0, this transition from an unstable
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to a stable system always occurs at a spiral point. Further, we could
give a name to the harvesting effort which produces a transition between
a spiral point and a node, characterized by {Al(I:Z)}2 -4 AZ(E) = 0.
This will not be explored further.
Now consider some examples to indicate how the foregoing theoretical
considerations may be applied, as well as some numerical data to

suggest aspects which can not readily be treated analytically.
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3. EXAMPLES
In this section we apply the results of the preceding section to
three examples of biological interest - the same three examples considered
in (Brauer, Soudack, Jarosch, 1976) except for order and the difference
in the mode of harvesting.
Example 1: Iviev-type interaction (Rosenzweig, 1971).

Consider the choice

(6) f(x,y) = (1 = x/K) - 2 (1 - &%)
alx,y) = s(e™ - ™).

-cK

g(k, 0) = s(e-c] -e §

With the values r=2, s=1 b=1, c=0.1 J=20, we find that for

It follow's immediately from (5) that Ec

K = 25, EC = 0.053; for K = 40, Ec = 0.117; for K = 60, EC = 0.1 32.
The analytic calculation of Es is so complicated as to be impractical.
This example will be examined more closely in the numerical study in
the following section.

Example 2: Michaelis-Menten type interaction (Holling, 1965).

Consider the choice

(7) fix,y) = rll - x/K) - %
B
g("yY) == (} +A)(X +A)

To assure the existence of an equilibrium in the first quadrant for E = 0

we must have K> J, and from (5) we obtain




¥ e sA(K - ])
¢ (J+A)K +A4)

We have shown (Brauer, Soudack, Jarosch, 1976) that for E = 0 the
system is stable if K< A + 2] and unstable if K> A +2]. If K> A + 2],
we calculate the harvesting effort Es which stabilizes it as follows:

Since

ES corresponds to fx{xm(Es),ym(Es)} =0 oF

Y. r
R A)2 b
But from (7) we see that
yco xoo
=ML~ ===)
X + A K -2
and thus Es corresponds to
X
o r
fl=3) = yxgy tA),
or K-x_ =x_+A with solution
o Dl
W = T

If this value is greater than ], then

2 _ SAK-A-2])
(8) Eg = 9(xg) = (J+AK +A) °

With the values r =2, s =1, A=10, ] = 20, we find that for K = 25,

E_ = 0.047; for K= 40, E = 0.133; andfor K= 60, E_ = 0.190.




For K= 25 and K = 40, the unharvested system is stable and there
is no ES, while for K = 60, Es = 0.048. This example will also be
examined more closely in the following section.

Example 3: (O'Brien, 1974).

Consider the choice

% ews 18
g(x,y) = ~SAL=

(J +A)(x + A)

for which K = ®, Since K = ® , there is no Ec’ but there is a

harvesting effort which will make xw(E) = ©, namely

E= lim g(x,y) = SAA
X - I+
R y e o
From fx(x,y) = - = > and X tA  n s ™ obtain
b3 (x + 4) 0 0
T R =
fx{xao(E)’yao(E)}‘ 2 +x°°(xw+A)_ 2 A g
X, xw(xw +4)

and therefore the system is stable for all harvesting efforts.

This completes the analysis for proportional harvesting of predator-
prey systems and is a parallel development to the case of constant-rate
harvesting of our previous paper (Brauer, Soudack and Jarosch, 1976).

The following section gives the results of a comprehensive simulation
study of models 1 and 2, and should give the reader some insight into

the qualitative behaviour of the systems.
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4. SIMULATION STUDY

For illustrative purposes, comprehensive simulation studies have
been made on Example 1 (Rosenzweig, 1971) and Example 2 (Holling, 1965).
The simulations were carried out on the University of British Columbia's
IBM 370/168 using a variable-step Runge-Kutta integration routine. The
figures presented in this section are computer plots. The piecewise
linearity of the plots is due to the plot routine which connects computed
points by straight lines. In actuality, as the step size approaches zero,
these plots will approach smooth curves with no discontinuity in slope.

The two parameters available for variation are K, which can be
increased by increasing prey nutrient, and E, the harvesting effort.
Three values of K are considered in both examples, i.e. K = 25, 40, 60
which correspond respectively to the cases exhibiting a stable node,
stable spiral and limit cycle for E = 0. As E is increased, the approach
of the trajectory to the equilibrium point is not dependent on the initial
states of the system and hence, neither is the biological '"extinction"
of the predators. Therefore, arbitrary initial states of (x,y) = (30, 30)
have been used in all cases.

Example 1: (Rosenzweig, 1971). ;

Consider the system

x' = x{2(1 - T’é—) - f[l - exp(=0.1x)]}

(10)

yl exp(-2)-exp(-0.1x) - E]

yl




Casel (K=25 0.0<E<0.06)

Figures 1, 2, 3 indicate the behaviour of the system as E is
increased from zero. As predicted, the stable equilibrium for E = 0 is
a node which tends toward the x-axis as E is increased.

From the previous section, Ec, the critical harvesting effort is
0.053, the value for which the equilibrium point reaches (K, 0) and
mathematical collapse occurs. The key difference in behaviour between
this system and that subjected to constant rate harvesting is that in this
case the trajectory approaches (K,0) as t - %, while in the constant
rate case, the predators go to extinction in finite time.

The conclusion to be drawn is that the collapse of the system due to
proportional harvesting is less sensitive than in the case for constant
rate harvesting, and hence we have ample warning that the harvesting
effort is reaching dangerous levels. As in the case for constant rate
harvesting, the concept of '"practical stability'' holds.

Case 2 (K=40, 0.0<E<0.13)

This case corresponds to an increase in prey nutrient as compared to
Case 1. The equilibrium point for E = 0 is a stéble spiral point,
indicating the destabilizing effect of increasing prey nutrient. As E is
increased, we obtain Figures 4, 5, 6, 7.

The above figures indicate the transition from spiral point to node
and the approach of this node to the x-axis. Calculations in the previous

section yield Ec = 0.117, and hence Figure 7 is equivalent to a biological
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collapse. As in the case for constant rate harvesting, increase in the
prey nutrient allows for greater harvesting efforts.
Case 3 (K= 60, 0<E<0.15)

In this case, the prey nutrient has been further increased until,
for E = 0, the equilibrium point is an unstable spiral point surrounded
by a stable limit cycle. Increasing prey nutrient has further destabilized
the system and it is for this case that the concept of "practical stability"
is most meaningful. The reader is referred to our previous paper (Brauer,
Soudack and Jarosch, 1976).

Examination of the above figures indicates the stabilizing effect of
harvesting. The limit cycle is first reduced in amplitude. The equilibrium
point then becomes a spiral and then a node as harvesting is increased.
From the previous section, EC = 0.132, and Figure 12 shows biological
extinction of the predator for E = 0.15. Again, in contrast to the case
for constant rate harvesting, mathematical extinction takes place only as
t - © and hence we have ample warning that the harvest effort is becoming
critical. Also in contrast to the case for constant rate harvesting, the
extinction properties are not a function of the initial states.

Example 2: (Holling, 1965).

Consider the system

x! xuu-ﬁ)-——z—}

X +10
(11)
(x - 20) E)

b Y{3(x +10) -
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Although different in formulation, the behaviour of this system is
quite similar to that of Example 1. The differences to note are that

(1) Ec for the various values of K differ for those from the

previous example, and

(2) The calculation of Es for K = 60 is tractable and its value

is validated by the si.:ulation.
Casel (K=25 0<E<0.055)

The behaviour of this system for E increasing is shown in
Figures 13, 14, 15.

The calculated value for EC is 0.047 as compared to 0.053 for
Example 1. Otherwise the type of behaviour is similar and no more need
be said.

Case2 (K=40, 0<E<0.15)

The results of the simulation for E increasing are shown in
Figures 16, 17, 18.

The calculated value of EC is 0.133 as compared to 0.117
for Example 1. Otherwise the behaviour of the two systems is similar.
Case 3 (K= 60, 0<E<0.22)

Calculations from the previous section indicate that the transition
from a stable spiral point for E = 0 to an unstable spiral point surrounded
by a limit cycle occurs at K = 50. Hence, this system is also destabilized
by nutrient enrichment. Although not included in this presentation, cases

for higher K were examined and the results indicate that the limit cycle

v Il
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for E = 0 comes dangerously close to the axes. Invoking the concept of
practical stability therefore limits the upper value of K, and hence the
intuitive conclusion that increasing prey nutrient leads to a higher
predator harvest has its limitations.

The results for E increasing are shown in Figures 19 to 24.

This set of figures clearly shows the stabilizing effect of harvesting.
Contraction of the limit cycle under a light harvest effort is desirable in
enhancing practical stability. The calculated value of Es (the harvesting
effort to transform the unstable equilibrium to a stable one) is 0.048,
and this is validated by the figures. For higher harvest rates, the
equilibrium point becomes a node and approaches the x~axis. The calculated
value of EC is 0.19, which is also validated by this study.

It is worth noting that critical harvesting efforts depend on the model
chosen to represent a system. The foregoing examples indicate that since
more than one model might be assumed to represent the same system, care

must be exercised in using the calculated value of Ec as a measure of

the true system Ec.




5. COMPARISONS BETWEEN CONSTANT~RATE AND PROPORTIONAL HARVESTING

Comparison of the results obtained from this study to those obtained

in the case of constant rate harvesting leads to the following observations:

I.

In both cases, nutrient enrichment allows for higher harvest

rates and efforts.

In both cases, the concept of 'practical stability'' must be
invoked to prevent limit cycles from approaching the axes

and to prevent the trajectory due to high harvest rates and

efforts from approaching the x-axis.

Constant rate harvesting can produce extinction (both mathematically
and biologically) of the predator in finite time. In the case of
proportional harvesting, the equilibrium reaches the point (K, 0)
for E = Ec and stays there. Therefore, mathematical extinction
of the predators occurs only as t - ®. For all practical
purposes, biological extinction occurs for E = Ec.

The high extinction sensitivity observed in constant rate harvest-
ing is not present in proportional harvesting. Thus, proportional
harvesting appears to be a safer technique. Ample warning is
given that dangerous levels of harvesting are being approached,

which is not the case for constant rate harvesting.
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6. CONCLUSIONS

The object of this study was to extend the qualitative and quantita-
tive insights obtained for constant-rate harvesting (Brauer, Soudack, and
Jarosch, 1976) to predator-prey systems subjected to proportional harvest-
ing. The results indicate that proportional harvesting is a safer method
if extinction of the predator species is to be avoided.

Various intriguing questions arose during the work. For example,
what type of harvesting creates a better yleld ? What types of strategies
will improve the yield ? What happens if a 'closed season' is imposed
on the system?

We propose to investigate these questions, the answers to which

should provide a useful tool in resource management.. ..
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